
Digital Signatures

Florin Iucha

Digital Signature

● What is it?
● How does it work?
● How do I get one?
● How do I use it?
● Why do you sign your e-mails?
● Where do I get more information?

What is it?

● A method to confirm the origin of a particular
digital artifact (file, e-mail message, etc)

● Similar to the real life signatures
● Of course, both can be forged, obtained

under duress...
● “Security is a process, not a product.”

How does it work?

● Digital signatures are intimately connected
to the public key cryptography
– A public algorithm
– A key pair: a public key and a private key
– The distinction is not intrinsic, but in the

distribution: one distributes the public key as
much as possible and protects the private key as
much as possible

How does it work? (cont.)

● Dual behavior:
– What is encrypted with the public key can only be

decrypted with the private key
– Likewise, what is encrypted with the private key

can only be decrypted with the public key

How does it work? (cont.)

● If I encrypt a file (*) with my private key and I
publish the encrypted file along with the
original file:
– Anybody who has my public key can verify that

the file was indeed encrypted with my private key

(*) Usually only a file digest (hash) is
encrypted, not the whole file.

Assuming...

● ... that I protected my private key to the best
of my knowledge,

● ... that nobody stole my key,
● ... that nobody broke the key generation

algorithm,
● ... that nobody installed a trojan program on

my computer that signs on my behalf,

How does it work? (cont.)

● Somebody can infer with some degree of
probability that I signed the file.

How do I get one?

● PKI: Public Key Infrastructure
● Generate a key pair and

– get the public key signed by a trusted CA and
publish it,

– or get a group of friends and sign each other key
(key singing party) and publish them on a key
server.

GPG Tutorial

● Generate a key pair
● Publish the public key
● Sign a file
● Import somebody else's public key
● Verify a signature
● Encrypt a file
● Decrypt a file

Generate a Key Pair

● gpg --gen-key then
● ... then follow the wizard to enter

– the key type (default is ok)
– the key size (default is ok)
– your user name, mailing address and comment

Generate a Key Pair (cont.)

● ... then move your mouse a lot, browse the
internet
– these activities will generate random bits for the

key

Publish the Public Key

● gpg --keyserver search.keyserver.net --
send-keys “Your Name”

Sign a File

● gpg --armor --sign --detach $filename
– Armor – generates 7-bit clean file

Import Somebody's Public Key

● gpg –search-keys “Somebody Else”
● Something like this will be displayed

florin@bee:~$ gpg --search-keys "Florin Iucha"
gpg: searching for "Florin Iucha" from HKP server subkeys.pgp.net
Keys 1-2 of 2 for "Florin Iucha"
(1) Florin Iucha <florin@iucha.net>
 1024 bit key 3B90DFE4, created 2000-10-25
(2) Florin Iucha <fiucha@neta.com>
 1024 bit key 954D59B0, created 2000-02-11
Enter number(s), N)ext, or Q)uit > 1
gpg: key 3B90DFE4: public key "Florin Iucha <florin@iucha.net>" imported
gpg: Total number processed: 1
gpg: imported: 1

Import Kernel.org Public Key

● Fast way:
– gpg --keyserver wwwkeys.pgp.net --recv-keys

0x517D0F0E
● Slow way:

– Copy the key from
http://www.kernel.org/signature.html into a file
(kernel.org.key)

– Import the key:
● gpg --import kernel.org.key

Verify a Signature

● gpg --verify $sigfile $filename
● For instance, verify a linux kernel patch

signature.

florin@bee:/alt/downloads/kernel$ gpg --verify patch-2.6.0-test6.bz2.sign
patch-2.6.0-test6.bz2
gpg: Signature made Sat Sep 27 20:53:42 2003 CDT using DSA key ID 517D0F0E
gpg: Good signature from "Linux Kernel Archives Verification Key
<ftpadmin@kernel.org>"

Encrypt a File

● gpg -r $recipient -e $filename
– Assumes that you imported $recipient's public key
– Will prompt if the key is not trusted.
– If you want to avoid the prompting, you need to

estabilish a trust relationship with the key.
● You verify the key with the owner.
● You get somebody you trust to vouch for the key

authenticity.

Signing a Key

● You can sign a key with your own private key
when you have some degree of certainty
that the key belongs to the person
– You have received the key in person.
– You know his voice and he read the key over the

phone (or the key fingerprint).

Signing a Key (cont.)

● How to sign a key
– gpg --edit-key $username or
– gpg --edit-key $keyid

● You will enter the command mode
– Enter “sign”
– Enter the degree of trust
– Enter you key passphrase
– Enter “save”

Decrypt a File

● gpg --decrypt $file
● You will be prompted for the key

passphrase.

Using GPG with E-Mail Clients

● Mutt
– Copy /usr/share/doc/mutt/examples/gpg.rc to

~/.muttrc.gpg
– Edit it to specify the fullpath to pgpewrap as most

likely /usr/lib/mutt is not in your path

Using GPG with Mutt (cont.)

● Add the following lines to your .muttrc
– set pgp_sign_as=0x3B90DFE4
– set pgp_autosign=yes
– set pgp_replyencrypt=yes
– set pgp_timeout=1800

● This will automatically sign outgoing
messages (both new messages and replyes)
and the passphrase will be cached for 30
minutes.

Using GPG with Mozilla

● Available as plugin at
http://enigmail.mozdev.org/.

● Couldn't get to work 8^(
● Install Mutt, go two slides back...
● ... or use the x.509 certificates.

Using GPG with Evolution

● Very easy
● Configure in “Tools>>Settings>>Mail

Accounts>>Security”
● Just enter your key id and check the desired

options (sign, encrypt, trust)

Why do you sign your e-mail?

● Spread awareness of the availability of
reasonably good e-mail privacy solutions.
– People and corporations still use sealed

envelopes to exchange messages.
● Spread my key fingerprint on various

mailing-lists and get it in many mailboxes.

Why do you ... (cont)

● “Real Men don't make backups. They upload
it via ftp and let the world mirror it.”

Web of Trust

● One of the hardest problems in
cryptography: key distribution
– Certificate Authority

● Hierarchical Model
● Can be always trusted?

– Webs of trust
● Small and disconnected
● Trust cliques

Upcoming Key Singing Event

● Where?
– ACM - U of MN Chapter [map] [map]
– 2-204 EE/CS
– 200 Union St
– Minneapolis, MN 55455

● When?
– Thursday, October 23, 2003
– 7:00pm to 7:30pm

● http://ry4an.org/keysigning/

More information (books)

● First and foremost Bruce Schneier's
(http://www.counterpane.com/) books:
– Applied Cryptography
– Secrets and Lies
– Practical Cryptography

More information (web sites)

● http://www.gnupg.org/
● http://www.pgpi.org/
● http://linux.oreillynet.com/pub/a/linux/2003/0

9/04/email_pki.html

Questions?

